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1 INTRODUCTION 

1.1 The Competition 

The ME 375 final project involves a robot competition where teams program an autonomous 

robot to complete two main tasks: line following and wall parking. The robot must autonomously 
follow a line around a track for two complete laps. Timing starts when the robot passes through a 
trigger mark for the first time and ends when it passes through for the third time. After completing 

two laps, the robot must autonomously switch to parking mode and position itself 8 inches away 
from a wall (measured from the frontmost point of the robot). 

Two different tracks will be used on the competition day: Field A, an easy track known in 
advance, and Field C, a harder competition track only revealed on the day of the competition. 

The scoring system awards points for successfully completing two laps (up to 50 points on 

Field C). There are bonuses for completing laps under time thresholds (up to 20 additional points 
for Field C in under 30 seconds), parking precision (up to 25 points for zone 1), and first attempts 

(5 points). 

Extra credit is also available for teams with the fastest times overall, best first attempts, and 
for teams whose robots can follow the track while traveling backwards. 

1.2 Hardware Specifications 

The robot used in this project is a “Skitter Classroom Robot” kit from AndyMark, Inc. The 
competition requirements state that robots should be assembled as originally intended and use only 

official robot kit parts. A photo of the Skitter robot used is shown in Fig 1.1. 

 
Fig 1.1. Skitter robot 

The robot is comprised of several major electro-mechanical components that allow it to 

complete the tasks of the competition. These components are tabulated below. 

 

Table 1.1. Robot Components 

Component Subsystem 

Frame Chassis 

Ball Caster Chassis 



Wheel Chassis 

DC Gearmotor + encoder Chassis 

IR Distance Sensor Input Sensors 

Line Follower Sensor Input Sensors 

Arduino Mega Controller 

Skitter board shield Controller 

12V Li-Ion Battery Controller 

  

The first subsystem of the robot is its chassis, which consists of the aluminum frame, ball 
caster, 3D printed wheels, and motors. The chassis measures 6.5” (width) x 7” (length) x 3” 
(height). It is powered by two 12V gearmotors with a no load torque of 300 g-cm.  

Attached to the aluminum frame are the two input sensors. The IR distance sensor has an 
effective range of 10 – 80 cm and outputs a single analog voltage 0.3 – 3.1 V. The line following 

sensor has an optimal sensing distance of 3mm and  outputs 3 analog voltages 0 – 5 V. 

Finally, the brains of the robot are the Arduino Mega microcontroller and skitter board shield. 
Both are powered via the 12V battery, and are connected to each of the sensors and motors. The 

Arduino Mega has an impressive 54 digital I/O and 16 analog I/O pins, and runs on a clock speed 
of 16 MHz. The skitter board shield fits on top of the Mega to regulate the power supplies and 

connect the JST ports to the I/O pins. 

 

  



2 SUBSYSTEM CHARACTERIZATION AND FULL SYSTEM MODEL 

2.1 Encoder Calibration  

The primary purpose of calibrating the two wheel encoders is to determine how many encoder 

ticks is equivalent to the amount of centimeters traveled by the robot down the track. In order to 
determine such formula, the robot was rolled forward in a straight line a known distance for 10 
trials. By using the Encoder Duo block from the ME 375 Robot Project library, the total number 

of encoder counts was found for each known distance. The distance vs encoder count plots for 
each motor are  shown in Fig 2.1.1 and Fig 2.1.2 below.  

 

Fig 2.1.1 Motor 1 Encoder Counts vs Distance 

 

Fig 2.1.2 Motor 1 Encoder Counts vs Distance 

The trendline equations for each figure were used to validate the calibration formula. To 
validate the calibration formula, the robot was rolled a known distance and the predicted encoder 
counts from the trendline equation was compared against the actual encoder counts measured by 

the robot. For reference, the trendline equation for motor 1 is 14.695x −  18.867, and 14.806x −
 17 for motor 2. The values for each motor are shown below in Table 2.1.1 and Table 2.1.2 

 

 

 

 

 

 



 

Table 2.1.1 Validation of Motor 2 Encoder Calibration 

Distance (cm) Predicted Encoder Counts Actual Encoder Counts 

35 495.458 495 

40 568.933 573 

45 642.408 639 

50 715.883 716 

55 789.358 772 

Table 2.1.2 Validation of Motor 2 Encoder Calibration 

Distance (cm) Predicted Encoder Counts Actual Encoder Counts 

35 501.21 506 

40 575.24 584 

45 649.27 644 

50 723.3 702 

55 797.33 800 

 

2.2 IR Sensor Calibration 

The primary purpose for calibrating the IR Sensor is to build a formula that converts the voltage 
measured by the IR sensor, to a distance in centimeters a given object is from the IR sensor. To 
build this formula, first a meter stick was placed perpendicular to the IR sensor, with the front end 

of the IR sensor aligned with the zero centimeter mark. A flat end of a cardboard box was used to 
trigger the IR sensor. The box was set at various distances away from the IR sensor, and the IR 

sensor’s output voltage was recorded. The IR sensor distance vs output voltage is shown in Fig 

2.2.1 below:  

 

Fig 2.2.1 IR Sensor Output Voltage vs Object Distance from IR Sensor 



The trendline equation from Fig 2.2.1 was used to validate the calibration formula. To validate 
the calibration formula, an object was placed a known distance away from the IR sensor, and the 

predicted voltage output from the trendline equation was compared against the actual voltage 
output measured by the robot. For reference, the trendline equation from the IR sensor calibration 

is 3.9076𝑒−0.136𝑥    

The are shown below in Table 2.2.1  

Table 2.2.1 Validation of IR Sensor 

Object Distance (in) Predicted Voltage Output Actual Voltage Output 

13 0.667 0.6794 

16 0.4435 0.4965 

19 0.295 0.4307 

22 0.196 0.2219 

25 0.13 0.1586 

 

2.3 Line Following Sensor Calibration 

The goal of calibrating the Line Following sensor is to determine how far off the robot is from 
the center of the track line based on the binary outputs of the left, right, and center line following 

sensors, and the continuous position reading. To calibrate the sensor, a coordinate system was 
mapped based on the thickness of the track, with the center of the track being 0 inches. Left of the 
track indicated a negative value, while right of the track indicated a positive value. Binary sensor 

and continuous position values were recorded against robot position for the right and left lines, by 
increasing increments of 0.0625in. The edges and center of the spacing area region were also 

recorded. The values are shown below in Tables 2.3.1, 2.3.2, and 2.3.3.  

Table 2.3.1 Binary Sensor and Continuous Position Outputs for Right Line 

Distance from Center (in) Binary 1 Binary 2 Binary 3 Continuous 

Position 

0.035 1 0 0 1 

0.0975 1 1 0 0.94 

0.23 1 1 0 0.77 

0.3275 1 1 0 0.74 

0.4 1 1 0 0.44 

0.5225 0 1 1 0.001 

 

 

 

 

 

 



 

 

Table 2.3.2 Binary Sensor and Continuous Position Outputs for Right Line 

Distance from Center (in) Binary 1 Binary 2 Binary 3 Continuous 

Position 

-0.035 0 0 1 -1 

-0.0975 0 1 1 -0.93 

-0.23 0 1 1 -0.86 

-0.3275 0 1 1 -0.69 

-0.4 0 1 1 -0.47 

-0.5225 0 1 0 -0.01 

 

Table 2.3.3 Binary Sensor and Continuous Position Outputs for Spacing Region  

Distance from Center (in) Binary 1 Binary 2 Binary 3 Continuous 

Position 

-0.03125 0 0 0 -0.01 

0.0 0 0 0 0.000268 

0.03125 0 0 0 0.001 

Given the thickness of the right and left lines and the spacing area, and based upon the results 
above, the flow chart, shown in Fig 2.3.1, maps the output of the three line following sensors and 
the continuous position reading to the position of the robot relative to the center of the line:  



 

Fig 2.3.1 Binary Sensor Value to Robot Position From Center 

To validate the line following sensor calibration, the robot was moved from the center of the 

line at known distances, and the Fig 2.3.1 was followed to see if the position was predicted 
correctly. The validation is shown in Table 2.3.4 below: 

Table 2.3.4 Validation of Line Following Sensor Calibration 

Actual Distance 

From Center (in) 

Predicted Distance From 

Center (in) 

-0.375 (-0.34, -0.4) 

-0.25 (-0.166, -0.33) 

-0.125 (-0.036, -0.165) 

-0.015625 (-0.035125, 0.0351250) 

0.015625 (-0.035125, 0.0351250) 

0.125 (0.036, 0.165) 

0.25 (0.166, 0.33) 

0.375 (0.34, 0.4) 

 

2.4 Motor-Gearbox-Wheel Subsystem Transfer Function   

To determine the transfer function that models the motor-gearbox-wheel subsystem, the robot 

was assumed to behave like a first-order system of the form 
𝐾

𝜏𝑠+1
. By applying a square wave with 

input PWM signals, the resulting wheel speed was able to be observed. A square wave input with 



an amplitude of 1, period of 1 second, pulse width of 50%, and phase delay of 0 seconds were 
applied to each motor individually using a Pulse Generator block in Simulink. The step response 

of the speeds for motor 1 and motor 2 are shown below in Fig 2.4.1. 

 

Fig 2.4.1 Step Response Data for Motor 1 and Motor 2 

From these responses, the static gain K and time constant tau were estimated using each 
motor’s output speed due to the step response from the pulse generator. The static gain found using 
the average steady state speed reached by each motor. For motor 1 and motor 2 those values were 

5.08 and 5.07 in/s per unit PWM, respectively. The time constant for motors 1 and 2 were found 
to be 0.057 and 0.039 seconds, respectively. The resulting transfer functions for each motor are as 

follows. Motor 1: 
5 .08

0.057𝑠 +1
 and Motor 2: 

5.07

0.039𝑠 +1
. To validate each transfer function, the Laplace 

transform of the transfer function was taken to solve for velocity and then integrated to get the 
position of the robot as a function of time. The actual time it took the robot to travel a known 

distance was compared the predicted time it took from the transfer function. The results are shown 
in Table 2.4.1 and Table 2.4.2 for both motors.  

Table 2.4.1 Validation of Motor 1 Transfer Function 

PWM 

Value 

Distance Robot Traveled 

(in) 

Predicted Duration (s) Actual Duration (s) 

0.5 10 1.296 1.04 

0.5 20 2.535 2.09 

0.5 30 3.774 3.13 

 

Table 2.4.2 Validation of Motor 1 Transfer Function 

PWM 

Value 

Distance Robot Traveled 

(in) 

Predicted Duration (s) Actual Duration (s) 

0.5 10 1.280 1.04 

0.5 20 2.520 2.09 

0.5 30 3.761 3.13 

 



2.5 Friction Identification 

While calculating the motor-gearbox-wheel transfer function, two nonlinearities were 
observed, both in the form of a deadband, where for a certain range of input values the motor 

speed’s output remained the same. Motor one had zero output speed for PWM duty cycles below 
0.27, and motor two below 0.25. This can most likely be explained due to static and dynamic 
friction experienced by the robot’s wheels, which prevent motion until the motors are run at enough 

power to overcome the frictional forces. Additionally, saturation was observed at PWM values 
above 0.95, where no additional increase in amplitude resulted in an increase in output speed.  

2.6 Full System Model 

The full system model was created by utilizing the motor-gearbox-wheel transfer function 
models for the left and right motors of the robot, with an input of the PWM Duty Cycle, and then 
relating the velocity of each wheel to the kinematics of the robot. The PWM input passes through 

a function block acting as a deadband, where the output is set to zero if the PWM input is below 
the deadband threshold. The deadband function is shown in Fig 2.6.2. The resulting PWM input 

is then bounded between 1 and -1 with a Saturation block, before passing through the motor-
gearbox-wheel transfer functions of each motor. The transfer functions output the wheel speed for 
both wheels, which  were used to find the robot’s position and orientation. To start, the robots 

angular speed can be modeled as the difference between wheel speeds 1 and 2, multiplied by the 
inverse of the width of the robot. The robot’s angle was found by integrating the angular speed. 

The robot’s x-position was found by adding both wheel speeds together and the multiplying that 
product by half of the cosine of the robots angle. Similarly, the robot’s y-position was found by 
adding both wheel speeds together and the multiplying that product by half of the sine of the robots 

angle. The resulting Full System Simulink Model can be seen in Fig 2.6.1. 

 

Fig 2.6.1 Full System Model 

 

Fig 2.6.2 Deadband Function Block Used for Both Motors  



3 CONTROLLER STRUCTURE AND DESIGN  

3.1 State Machine 

At the highest level, we propose for the robot to operate as a simple state machine with three 

distinct modes: line following, parking, and complete. The transitional conditions between each of 
these states aligns with the requirements of the competition: completing two laps around a track 
before aligning a distance from a wall and halting. The high level state transition diagram is shown 

below in Fig 3.1. 

 
Fig 3.1. State Transition Diagram 

When the robot is first powered on, all output is paused until the run button is pressed, as 

illustrated at the top of the state transition diagram. After the button press is detected, the lap 
number is initialized to zero and the robot enters State 0: Line Following. While state 0 is active, 

a feedback loop goes into effect to achieve line following, which will be further discussed below. 

Additionally in State 0, a continuous loop is monitoring sensor data to count the number of 
trigger marks (laps) that the robot has completed. This is the conditional that will allow the 

machine to move to State 1: parking. 



In State 1, line following continues but with an additional speed restriction feedback loop. 
Based on readings from the IR sensor, the robot continues moving forward until it reaches a 

predetermined distance from the wall. This condition move the machine to state 2: complete. 

In state 2, all motor movement is stopped and the competition is considered complete. Despite 

this, the state is not terminal and can pass back to state 0 via another button press to reset the robot. 
This is beneficial for testing and allows multiple runs without re-running the Simulink code.   

3.2 Control Structure Schematic 

To dive deeper into the details how we plan to structure our robot’s controller, we will present 

a schematic and explain the key features of its implementation. It is convenient to show the primary 
flow of the control structure as a Simulink block diagram, as illustrated in Fig. 3.2. In this 

schematic, you can see that the controller is divided into four main components: sensor input, state 
machine, line-following controller, and motor output (which contains both the encoder blocks and 
motor blocks).  

 
Fig 3.2. Control Structure Schematic 

  

The sensor input area in light blue illustrates the data collection from our two primary sensors: 

IR distance and line following light sensor. This raw data is immediately fed into the second area, 
the state machine.  

The state machine’s logic has already been discussed previously, but now it is apparent how 
the logic fits into the overall control flow, shown in the purple area. The stateMachine function 
takes all sensor data (plus a multitude of configurable constants) and makes decisions on what the 

robot should do next. It then outputs a single value: a velocity boundary for the line-follower. 

This upper boundary for velocity is then fed into the third area in grey: the line-following 
controller. The details of this feedback system will be discussed below, but the important fact to 

note is that the component converts the velocity input from the state machine to raw motor output 
values.  

This is then fed to the fourth and final component of the control structure, motor output. The 
motor output from the line-following controller is clamped between 1 and -1 by saturation blocks, 
and dead-banded before being sent to the motors as PWM. A detailed view of the “Motor PWM” 

subsystem is presented below in Fig 3.3, showing both the motor and encoder blocks. 



 
Fig 3.3. Motor PWM block internals 

 

Please note that the control structure presented above is idealized and does not include a variety 
of output scopes, debug displays, and additional user inputs for enabling each motor separately 

and testing turn radius. The full Simulink controller for the robot will be submitted separately for 
your consideration.  

 

3.3 Feedback Loops 

The proposed controller consists of two feedback loops. The primary loop is a line-following 
algorithm active during both States 0 and 1. This was selected to be a PD controller due to the 

importance of maintaining the centerline over long straightaways (Proportional) and tight curves 
with high rates of error (Derivative). The controller will take an input from the continuous position 
line sensor in the range [-1, 1] where 0 indicates the robot is perfectly centered. It will output 

another unitless constant in the range [-1, 1] which is referred to as “turn”. This turn value will 
then be transformed into two PWM outputs, one for each motor. Based on estimates from the 

sensor calibration and system identification, we expect to have a Kp of approximately 1.5 and a Kd 
of approximately 0.02. 

Additionally, during State 1 a second feedback loop comes into effect. This will be a 

proportional controller that scales the robot’s maximum velocity as it approaches the wall. The P 
controller will take an input from the IR sensor in units of cm, and output a maximum velocity in 

the range [0, 1]. When the robot is the desired distance from the wall, the maximum velocity output 
will be zero. While the choice of Kp for this controller is fairly arbitrary and only determines how 
smoothly the robot will brake, a starting value of 0.1 has been chosen. 

It is also important to note that there is no feedback loop for motor speed in this design. For 
several of the previous labs, a controller was developed to precisely tune the linear velocity of each 

motor via feedback from the encoders. However, this controller was not perfect and introduced 
slight delays and oscillations into the system. For line following, where fast response is prioritized 
over accurate speeds, it was decided to bypass the speed controller and directly drive the motors 

via PWM.  

3.4 Configurable Parameters 

One last feature of note in the controller design is the large quantity of configurable constants 

being input into the state machine and line-following controller. These determine the system’s 



behavior and can be dynamically modified to tune its performance. Table 1 below shows each of 
these parameters and their purpose. 

 

Table 3.1. Configurable Parameter List 

Parameter Description Nominal Value 

Stop Dist Distance from the wall at which the robot will stop 

completely after reaching the final lap 

21 cm 

Slowdown Dist Distance added to Stop Dist at which the robot will 

begin proportionally slowing as it reaches the wall 

10 cm. 

Total Laps Number of trigger marks to count before changing 

from State 0 to State 1 

3 (1 passing start line, 

then 2 laps) 

Tick Confidence Number of consecutive trigger mark readings that 

must be met before incrementing the lap count 

15 

Max V Unitless number [0, 1] that defines the maximum 

PWM the controller will send to the motors 

1 

Cont Pos DB Part of the trigger detection condition that prevents 

a mark from being detected if the line sensor’s 

continuous position reading is above this value 

0.1 

Ref Desired continuous position value, an offset from 

center of the line [-1, 1] 

0 

P Line following proportional gain 1.5 

D Line following derivative gain 0.02 

Cont Pos Dead Band Continuous position region where the controller 

will not attempt to make jittery corrections 

0.03 

Min V Turn Unitless number [0, 1] that defines the minimum 

PWM the controller will send to the motors. This 

determines the minimum possible turn radius. 

0.3 

  

4 POTENTIAL PROBLEMS 

While much consideration has been given to the proper functionality of the robot on the 
competition track, there are several problems that may arise during implementation and testing. 
One such issue is the calibration of event detections. The constants for trigger mark recording 

explained above are fairly arbitrarily chosen and may not perform perfectly in the real world. The 
same is true regarding the Kp for wall detection slowdown. It is expected that these values will 

need to be tweaked through trial and error to consistently detect the events as desired without false 
positives. 

Along a similar vein, the idealized full system model explained above is likely imperfect and 

does not match the precise real-world dynamics. While it is anticipated that the estimated values 
for Kp and Kd for the line follower will work, they will likely need fine-tuning for optimal track 

navigation at speed. There are a number of considerations, like the tradeoff between more precise 
slow speeds and sketchier high speeds, that are not easily modeled and must be experimentally 
determined. We aim to achieve the points for lap completion under 38 seconds, which will require 

fiddling with the values for optimal performance. 



A final concern is the differences between test tracks and competition tracks. There are a 
number of variables that will affect the performance of the robot, including light level (needed for 

reliable line detection), track cleanliness (dirt and particles affect line detection and wheel 
traction), and the uncertain layout of Field C, which is not revealed until the day of the competition. 

To overcome these problems, we will test the robot in as many varying conditions as possible, and 
utilize the practice tracks both forward and reverse to provide as much variety of experimental 
data as possible. 

   


