ME 375 FINAL PROJECT REPORT
ROBOT CONTROL COMPETITION

Team Member: Gabriel Kurfman

Contribution: 50%

Summary: Contributed to the Introduction, Proposed Controller Structure and Design, and
Potential Problems sections of the written report. Also worked on controller design and Simulink
code.

Team Member: Michael Olson

Contribution: 50%

Summary: Contributed to the Subsystem Characterization and Full System Model section of the
written report. Also worked on controller design and testing.

1 INTRODUCTION

1.1 The Competition

The ME 375 final project involves a robot competition where teams program an autonomous
robot to complete two main tasks: line following and wall parking. The robot must autonomously
follow a line around a track for two complete laps. Timing starts when the robot passes through a
trigger mark for the first time and ends when it passes through for the third time. After completing
two laps, the robot must autonomously switch to parking mode and position itself 8 inches away
from a wall (measured from the frontmost point of the robot).

Two different tracks will be used on the competition day: Field A, an easy track known in
advance, and Field C, a harder competition track only revealed on the day of the competition.

The scoring system awards points for successfully completing two laps (up to 50 points on
Field C). There are bonuses for completing laps under time thresholds (up to 20 additional points
for Field C in under 30 seconds), parking precision (up to 25 points for zone 1), and first attempts
(5 points).

Extra credit is also available for teams with the fastest times overall, best first attempts, and
for teams whose robots can follow the track while traveling backwards.

1.2 Hardware Specifications

The robot used in this project is a “Skitter Classroom Robot” kit from AndyMark, Inc. The
competition requirements state that robots should be assembled as originally intended and use only
official robot kit parts. A photo of the Skitter robot used is shown in Fig 1.1.

Fig 1.1. Skitter robot

The robot is comprised of several major electro-mechanical components that allow it to
complete the tasks of the competition. These components are tabulated below.

Table 1.1. Robot Components

Component Subsystem

Frame Chassis

Ball Caster Chassis

Wheel

Chassis

DC Gearmotor + encoder

Chassis

IR Distance Sensor

Input Sensors

Line Follower Sensor

Input Sensors

Arduino Mega Controller
Skitter board shield Controller
12V Li-lon Battery Controller

The first subsystem of the robot is its chassis, which consists of the aluminum frame, ball
caster, 3D printed wheels, and motors. The chassis measures 6.5” (width) x 7” (length) x 3”
(height). It is powered by two 12V gearmotors with a no load torque of 300 g-cm.

Attached to the aluminum frame are the two input sensors. The IR distance sensor has an
effective range of 10 — 80 cm and outputs a single analog voltage 0.3 — 3.1 V. The line following
sensor has an optimal sensing distance of 3mm and outputs 3 analog voltages 0 —5 V.

Finally, the brains of the robot are the Arduino Mega microcontroller and skitter board shield.
Both are powered via the 12V battery, and are connected to each of the sensors and motors. The
Arduino Mega has an impressive 54 digital I/O and 16 analog I/O pins, and runs on a clock speed
of 16 MHz. The skitter board shield fits on top of the Mega to regulate the power supplies and

connect the JST ports to the 1/O pins.

2 SUBSYSTEM CHARACTERIZATION AND FULL SYSTEM MODEL
2.1 Encoder Calibration

The primary purpose of calibrating the two wheel encoders is to determine how many encoder
ticks is equivalent to the amount of centimeters traveled by the robot down the track. In order to
determine such formula, the robot was rolled forward in a straight line a known distance for 10
trials. By using the Encoder Duo block from the ME 375 Robot Project library, the total number
of encoder counts was found for each known distance. The distance vs encoder count plots for
each motor are shown in Fig 2.1.1 and Fig 2.1.2 below.

400

Encoder Counts

5 10 15 20 25 30

Fig 2.1.1 Motor 1 Encoder Counts vs Distance

Motor 2 Encoder Count vs Distance

o 5 10 15 20 25 30
Distance (cm)

Fig 2.1.2 Motor 1 Encoder Counts vs Distance

The trendline equations for each figure were used to validate the calibration formula. To
validate the calibration formula, the robot was rolled a known distance and the predicted encoder
counts from the trendline equation was compared against the actual encoder counts measured by
the robot. For reference, the trendline equation for motor 1is 14.695x — 18.867,and 14.806x —

17 for motor 2. The values for each motor are shown below in Table 2.1.1 and Table 2.1.2

Table 2.1.1 Validation of Motor 2 Encoder Calibration

Distance (cm) | Predicted Encoder Counts | Actual Encoder Counts

35 495.458 495
40 568.933 573
45 642.408 639
50 715.883 716
55 789.358 772

Table 2.1.2 Validation of Motor 2 Encoder Calibration

Distance (cm) | Predicted Encoder Counts | Actual Encoder Counts

35 501.21 506
40 575.24 584
45 649.27 644
50 723.3 702
55 797.33 800

2.2 IR Sensor Calibration

The primary purpose for calibrating the IR Sensor is to build a formula that converts the voltage
measured by the IR sensor, to a distance in centimeters a given object is from the IR sensor. To
build this formula, first a meter stick was placed perpendicular to the IR sensor, with the front end
of the IR sensor aligned with the zero centimeter mark. A flat end of a cardboard box was used to
trigger the IR sensor. The box was set at various distances away from the IR sensor, and the IR
sensor’s output voltage was recorded. The IR sensor distance vs output voltage is shown in Fig
2.2.1 below:

A IR Sensor Output Voltage vs Object Distance

b
3

Output Voltage (V)
~

2 3 4 5 6 7 8 9 10
Distance (in)

Fig 2.2.1 IR Sensor Output Voltage vs Object Distance from IR Sensor

The trendline equation from Fig 2.2.1 was used to validate the calibration formula. To validate
the calibration formula, an object was placed a known distance away from the IR sensor, and the
predicted voltage output from the trendline equation was compared against the actual voltage
output measured by the robot. For reference, the trendline equation from the IR sensor calibration
is 3.9076¢~0136x

The are shown below in Table 2.2.1
Table 2.2.1 Validation of IR Sensor

Object Distance (in) | Predicted Voltage Output | Actual Voltage Output
13 0.667 0.6794
16 0.4435 0.4965
19 0.295 0.4307
22 0.196 0.2219
25 0.13 0.1586

2.3 Line Following Sensor Calibration

The goal of calibrating the Line Following sensor is to determine how far off the robot is from
the center of the track line based on the binary outputs of the left, right, and center line following
sensors, and the continuous position reading. To calibrate the sensor, a coordinate system was
mapped based on the thickness of the track, with the center of the track being 0 inches. Left of the
track indicated a negative value, while right of the track indicated a positive value. Binary sensor
and continuous position values were recorded against robot position for the right and left lines, by
increasing increments of 0.0625in. The edges and center of the spacing area region were also
recorded. The values are shown below in Tables 2.3.1, 2.3.2, and 2.3.3.

Table 2.3.1 Binary Sensor and Continuous Position Outputs for Right Line

Distance from Center (in) | Binary 1 | Binary 2 | Binary 3 | Continuous
Position

0.035 1 0 0 1

0.0975 1 1 0 0.94

0.23 1 1 0 0.77

0.3275 1 1 0 0.74

0.4 1 1 0 0.44

0.5225 0 1 1 0.001

Table 2.3.2 Binary Sensor and Continuous Position Outputs for Right Line

Distance from Center (in) | Binary 1 | Binary 2 | Binary 3 | Continuous
Position

-0.035 0 0 1 -1

-0.0975 0 1 1 -0.93

-0.23 0 1 1 -0.86
-0.3275 0 1 1 -0.69

-0.4 0 1 1 -0.47
-0.5225 0 1 0 -0.01

Table 2.3.3 Binary Sensor and Continuous Position Outputs for Spacing Region

Distance from Center (in) | Binary 1 | Binary 2 | Binary 3 | Continuous
Position

-0.03125 0 0 0 -0.01

0.0 0 0 0 0.000268

0.03125 0 0 0 0.001

Given the thickness of the right and left lines and the spacing area, and based upon the results
above, the flow chart, shown in Fig 2.3.1, maps the output of the three line following sensors and
the continuous position reading to the position of the robot relative to the center of the line:

Fig 2.3.1 Binary Sensor Value to Robot Position From Center

To validate the line following sensor calibration, the robot was moved from the center of the
line at known distances, and the Fig 2.3.1 was followed to see if the position was predicted
correctly. The validation is shown in Table 2.3.4 below:

Table 2.3.4 Validation of Line Following Sensor Calibration

Actual Distance Predicted Distance From
From Center (in) Center (in)

-0.375 (-0.34, -0.4)

-0.25 (-0.166, -0.33)

-0.125 (-0.036, -0.165)
-0.015625 (-0.035125, 0.0351250)
0.015625 (-0.035125, 0.0351250)
0.125 (0.036, 0.165)

0.25 (0.166, 0.33)

0.375 (0.34,0.4)

2.4 Motor-Gearbox-Wheel Subsystem Transfer Function

To determine the transfer function that models the motor-gearbox-wheel subsystem, the robot
was assumed to behave like a first-order system of the form % By applying a square wave with
input PWM signals, the resulting wheel speed was able to be observed. A square wave input with

an amplitude of 1, period of 1 second, pulse width of 50%, and phase delay of 0 seconds were
applied to each motor individually using a Pulse Generator block in Simulink. The step response

of the speeds for motor 1 and motor 2 are shown below in Fig 2.4.1.

6 Step Response of Motor 1 and Motor 2
T T T T

- M1 Speed
5 AR i M2 Speed
Il I

P S \ V11V ' ‘\7
P r

Motor Speed (cm/s)

0 0.2 0.4 0.6 0.8 1
Time (s)

Fig 2.4.1 Step Response Data for Motor 1 and Motor 2

From these responses, the static gain K and time constant tau were estimated using each
motor’s output speed due to the step response from the pulse generator. The static gain found using
the average steady state speed reached by each motor. For motor 1 and motor 2 those values were
5.08 and 5.07 in/s per unit PWM, respectively. The time constant for motors 1 and 2 were found
tobe 0.057 and 0.039 seconds, respectively. The resulting transfer functions for each motor are as

5.08 5.07
follows. Motor 1: and Motor 2: .
0.057s +1 0.039s +1

transform of the transfer function was taken to solve for velocity and then integrated to get the
position of the robot as a function of time. The actual time it took the robot to travel a known
distance was compared the predicted time it took from the transfer function. The results are shown
in Table 2.4.1 and Table 2.4.2 for both motors.

Table 2.4.1 Validation of Motor 1 Transfer Function

To validate each transfer function, the Laplace

PWM Distance Robot Traveled | Predicted Duration (s) | Actual Duration (s)
Value (in)

0.5 10 1.296 1.04

0.5 20 2.535 2.09

0.5 30 3.774 3.13

Table 2.4.2 Validation of Motor 1 Transfer Function

PWM Distance Robot Traveled | Predicted Duration (s) | Actual Duration (s)
Value (in)

0.5 10 1.280 1.04

0.5 20 2.520 2.09

0.5 30 3.761 3.13

2.5 Friction Identification

While calculating the motor-gearbox-wheel transfer function, two nonlinearities were
observed, both in the form of a deadband, where for a certain range of input values the motor
speed’s output remained the same. Motor one had zero output speed for PWM duty cycles below
0.27, and motor two below 0.25. This can most likely be explained due to static and dynamic
friction experienced by the robot’s wheels, which prevent motion until the motors are run at enough
power to overcome the frictional forces. Additionally, saturation was observed at PWM values
above 0.95, where no additional increase in amplitude resulted in an increase in output speed.

2.6 Full System Model

The full system model was created by utilizing the motor-gearbox-wheel transfer function
models for the left and right motors of the robot, with an input of the PWM Duty Cycle, and then
relating the velocity of each wheel to the kinematics of the robot. The PWM input passes through
a function block acting as a deadband, where the output is set to zero if the PWM input is below
the deadband threshold. The deadband function is shown in Fig 2.6.2. The resulting PWM input
is then bounded between 1 and -1 with a Saturation block, before passing through the motor-
gearbox-wheel transfer functions of each motor. The transfer functions output the wheel speed for
both wheels, which were used to find the robot’s position and orientation. To start, the robots
angular speed can be modeled as the difference between wheel speeds 1 and 2, multiplied by the
inverse of the width of the robot. The robot’s angle was found by integrating the angular speed.
The robot’s x-position was found by adding both wheel speeds together and the multiplying that
product by half of the cosine of the robots angle. Similarly, the robot’s y-position was found by
adding both wheel speeds together and the multiplying that product by half of the sine of the robots
angle. The resulting Full System Simulink Model can be seen in Fig 2.6.1.

0.27

M1 Deadband

M1 Friction Deadband Motor 1

Mator 1 PWM Duty Cycl ’
eter uty Cycle Transfer Function

0.25

im
M2 Deadband 4, a | aume
D—’ * deadZone den(s) Motor 2 Speed

Motor 2 Saturation Motor 2

M2 Friction Deadband
Motor 2 PWM Duty Cycle Transior Function

Fig 2.6.1 Full System Model

|"&|FullProgram1 » |44 M1 Friction Deadband

1 [function y = deadZone(lim, x)

2 % Set output to zero if input is outside [-d, d]
3 if abs(x) > lim

4 y = X;

5 else

6 y = 9;

7

8

Fig 2.6.2 Deadband Function Block Used for Both Motors

3 CONTROLLER STRUCTURE AND DESIGN
3.1 State Machine

At the highest level, we propose for the robot to operate as a simple state machine with three
distinct modes: line following, parking, and complete. The transitional conditions between each of
these states aligns with the requirements of the competition: completing two laps around a track
before aligning a distance from a wall and halting. The high level state transition diagram is shown
below in Fig 3.1.

Run button pressed

' State 0 '
Lime Following

lapMumber
== TOTAL_LAPS?

State 1
Parking

Yes

ultrasonicDist
<= STOP_DIST?

State 2
Complete

Run button pressed?

Fig 3.1. State Transition Diagram

When the robot is first powered on, all output is paused until the run button is pressed, as
illustrated at the top of the state transition diagram. After the button press is detected, the lap
number is initialized to zero and the robot enters State 0: Line Following. While state 0 is active,
a feedback loop goes into effect to achieve line following, which will be further discussed below.

Additionally in State 0, a continuous loop is monitoring sensor data to count the number of
trigger marks (laps) that the robot has completed. This is the conditional that will allow the
machine to move to State 1: parking.

In State 1, line following continues but with an additional speed restriction feedback loop.
Based on readings from the IR sensor, the robot continues moving forward until it reaches a
predetermined distance from the wall. This condition move the machine to state 2: complete.

In state 2, all motor movement is stopped and the competition is considered complete. Despite
this, the stateis not terminal and can pass back to state 0 via another button press to reset the robot.
This is beneficial for testing and allows multiple runs without re-running the Simulink code.

3.2 Control Structure Schematic

To dive deeper into the details how we plan to structure our robot’s controller, we will present
a schematic and explain the key features of its implementation. Itis convenient to show the primary
flow of the control structure as a Simulink block diagram, as illustrated in Fig. 3.2. In this
schematic, you can see that the controller is divided into four main components: sensor input, state
machine, line-following controller, and motor output (which contains both the encoder blocks and
motor blocks).

Fig 3.2. Control Structure Schematic

The sensor input area in light blue illustrates the data collection from our two primary sensors:
IR distance and line following light sensor. This raw data is immediately fed into the second area,
the state machine.

The state machine’s logic has already been discussed previously, but now it is apparent how
the logic fits into the overall control flow, shown in the purple area. The stateMachine function
takes all sensor data (plus a multitude of configurable constants) and makes decisions on what the
robot should do next. It then outputs a single value: a velocity boundary for the line-follower.

This upper boundary for velocity is then fed into the third area in grey: the line-following
controller. The details of this feedback system will be discussed below, but the important fact to
note is that the component converts the velocity input from the state machine to raw motor output
values.

This is then fed to the fourth and final component of the control structure, motor output. The
motor output from the line-following controller is clamped between 1 and -1 by saturation blocks,
and dead-banded before being sent to the motors as PWM. A detailed view of the “Motor PWM”
subsystem is presented below in Fig 3.3, showing both the motor and encoder blocks.

»(3

&D)
M1 Out PW
1, B . Coof: kEa }J—> 1
| | | | 1 M1 PWM ‘ F,
T Total p M1 Speed P{< deadzone | Vmax -
f) —_— deadZone f M2 Out P 2
»| } »|
Diff Diff Smeuw 2) #« J
JUL i | 4, =)
P|d deadzone | Vmax
2 Total p »2) deadZone » ENA
M2 Speed ‘
D,
Enable

Fig 3.3. Motor PWM block internals

Please note that the control structure presented above is idealized and does not include a variety
of output scopes, debug displays, and additional user inputs for enabling each motor separately
and testing turn radius. The full Simulink controller for the robot will be submitted separately for
your consideration.

3.3 Feedback Loops

The proposed controller consists of two feedback loops. The primary loop is a line-following
algorithm active during both States 0 and 1. This was selected to be a PD controller due to the
importance of maintaining the centerline over long straightaways (Proportional) and tight curves
with high rates of error (Derivative). The controller will take an input from the continuous position
line sensor in the range [-1, 1] where 0O indicates the robot is perfectly centered. It will output
another unitless constant in the range [-1, 1] which is referred to as “turn”. This turn value will
then be transformed into two PWM outputs, one for each motor. Based on estimates from the
sensor calibration and system identification, we expect to have a K of approximately 1.5 and a Kq
of approximately 0.02.

Additionally, during State 1 a second feedback loop comes into effect. This will be a
proportional controller that scales the robot’s maximum velocity as it approaches the wall. The P
controller will take an input from the IR sensor in units of cm, and output a maximum velocity in
the range [0, 1]. When the robot is the desired distance from the wall, the maximum velocity output
will be zero. While the choice of K for this controller is fairly arbitrary and only determines how
smoothly the robot will brake, a starting value of 0.1 has been chosen.

It is also important to note that there is no feedback loop for motor speed in this design. For
several of the previous labs, a controller was developed to precisely tune the linear velocity of each
motor via feedback from the encoders. However, this controller was not perfect and introduced
slight delays and oscillations into the system. For line following, where fast response is prioritized
over accurate speeds, it was decided to bypass the speed controller and directly drive the motors
via PWM.

3.4 Configurable Parameters

One last feature of note in the controller design is the large quantity of configurable constants
being input into the state machine and line-following controller. These determine the system’s

behavior and can be dynamically modified to tune its performance. Table 1 below shows each of
these parameters and their purpose.

Table 3.1. Configurable Parameter List

Parameter Description Nominal Value

Stop Dist Distance from the wall at which the robot will stop | 21 cm
completely after reaching the finallap

Slowdown Dist Distance added to Stop Dist at which the robot will | 10 cm.
begin proportionally slowing as it reaches the wall

Total Laps Number of trigger marksto countbefore changing | 3 (1 passing start line,
from State 0 to State 1 then 2 laps)

Tick Confidence Number of consecutive trigger mark readings that | 15

must be met before incrementing the lap count

Max V Unitless number [0, 1] that defines the maximum | 1
PWM the controller will send to the motors

Cont Pos DB Part of the trigger detection condition that prevents | 0.1
a mark from being detected if the line sensor’s
continuous position reading is above this value

Ref Desired continuous position value, an offset from | 0
center of the line [-1, 1]

P Line following proportional gain 1.5

D Line following derivative gain 0.02

Cont Pos Dead Band | Continuous position region where the controller | 0.03
will not attempt to make jittery corrections

Min V Tum Unitless number [0, 1] that defines the minimum | 0.3
PWM the controller will send to the motors. This
determines the minimum possible turn radius.

4 POTENTIAL PROBLEMS

While much consideration has been given to the proper functionality of the robot on the
competition track, there are several problems that may arise during implementation and testing.
One such issue is the calibration of event detections. The constants for trigger mark recording
explained above are fairly arbitrarily chosen and may not perform perfectly in the real world. The
same is true regarding the K, for wall detection slowdown. It is expected that these values will
need to be tweaked through trial and error to consistently detect the events as desired without false
positives.

Along a similar vein, the idealized full system model explained above is likely imperfect and
does not match the precise real-world dynamics. While it is anticipated that the estimated values
for Kp and K for the line follower will work, they will likely need fine-tuning for optimal track
navigation at speed. There are a number of considerations, like the tradeoff between more precise
slow speeds and sketchier high speeds, that are not easily modeled and must be experimentally
determined. We aim to achieve the points for lap completion under 38 seconds, which will require
fiddling with the values for optimal performance.

A final concern is the differences between test tracks and competition tracks. There are a
number of variables that will affect the performance of the robot, including light level (needed for
reliable line detection), track cleanliness (dirt and particles affect line detection and wheel
traction), and the uncertain layout of Field C, which is not revealed until the day of the competition.
To overcome these problems, we will test the robot in as many varying conditions as possible, and
utilize the practice tracks both forward and reverse to provide as much variety of experimental
data as possible.

